APPLICATION OF COMPOSITE FIBERS WITH THE FERROCYANIDE K-Cu LAYER FOR SELECTIVE REMOVAL OF 137CS FROM MULTICOMPONENT SOLUTION

Authors

  • Yu. Bondar
  • S. Kuzenko
  • V. Slyvinsky

DOI:

https://doi.org/10.15407/geotech2019.29.041

Keywords:

composite adsorbent, polyacrylonitrile fibers, potassium-copper ferrocyanide, selectivity, 137Cs, liquid radioactive waste.

Abstract

The development of selective adsorbents for liquid radioactive waste amount reduction is an actual problem. Composite adsorbents with the active ferrocyanide phase are of particular interest for 137Cs removal from contaminated waters. Polymer fibers are a promising host solid support for the synthesis of composite adsorbents because composite fibers can be synthesized through a one-stage experiment by formation of ferrocyanide layer on the fibers’ surface in a solution (in situ).Composite adsorbent based on polyacrylonitrile fibers was synthesized by in situ formation of the ferricya- nide K-Cu layer on the fibers’ surface. This paper presents the experimental data on 137Cs removal from model solutions prepared from distilled water and high-saline solution from Liman Kuyalnik brine.It was found that the synthesized composite fibers with ferrocyanide K-Cu layer can effec- tively remove 137Сs from both solutions. In the case of solution based on distilled water, the adsorption efficiency was 93% and the distribution coeffi- cient – 4,1х103 cm3/g. High selectivity with regard to 137Сs is confirmed by the data on adsorption from the high-saline solution prepared from Liman Kuyalnik brine. In the case of a high concentration of competing sodium and potassium ions in the solution, the adsorption efficiency and distribu- tion coefficient were 99% and 1,9х104 cm3/g, respectively.The obtained results are similar to those for the composite polyacrylonitrile fibers with the ferricyanide K-Ni layer, while the composite fibers with the ferricyanide K-Cu layer demonstrate higher adsorption parameters. The synthesized composite fibers can be recommended for the removal of cesium radionuclides from natural and industrial waters, as well as for the decontamination of low-level liquid radioactive waste with a high content of competing potassium and sodium ions.

References

Waste treatment and immobilization technologies involving inorganic sorbents: IAEA-TECDOC-947. Vienna : IAEA, 1997. 238 p.

Мясоедова Г.В., Никашина В.А. Сорбционные материалы для извлечения радионуклидов из водных сред // Ж. Рос. хим. об-ва им. Д.И. Менделеева. 2006. L (5). c. 55—63.

Figueiredo B.R., Cardoso S.P., Portugal I., et al. Inorganic ion exchangers for cesium removal from radioactive wastewater // Separation & Purification Reviews.2017. 46(2). p. 1—31.

Милютин В.В., Некрасова Н.А., Харитонов О.В. и др. Сорбционные технологии в современной прикладной радиохимии // Сорбц. хромат. процессы. – 2016. – 16(3). c. 313—322.

Тананаев И.В., Сейфер Г. Б., Харитонов Ю. Я. и др. Химия ферроцианидов. М.: Наука, 1971. 320 с.

Vincent T., Vincent C., Guibal E. Immobilization of Metal Hexacyanoferrate Ion-Exchangers for the Synthesis of Metal Ion Sorbents - A Mini-Review. Molecules. 2015. 20. p. 20582—20613.

Tusa E.H., Paavola A., Harjula R. et al. Industrial Scale Removal of Cesium with Hexacyanoferrate Exchanger - Process Realization and Test Run // Nucl. Technol. 1994. 107. p. 279—284.

Шарыгин Л.М., Муромский А.Ю. Неорганический сорбент для ионоселективной очистки жидких радиоактивных отходов // Радиохимия. 2004. 46(2). c. 171—175.

Šebesta F. Composite sorbents of inorganic ion- exchangers and polyacrylonitrile binding matrix I. Methods of modifica- tion of properties of inorganic ion-exchangers for application in column packed beds // J. Radioanal. Nucl. Chem. 1997. 220(1). p. 77—88.

Ремез В.П., Зеленин В.И., Смирнов А.Л. и др. Целлюлозно-неорганические сорбенты в радиохимическом анализе I. Перспективные сорбенты для радиохимического анализа // Сорбц. хромат. процессы. 2009. 9(5). c. 627—632.

Sinha P.K., Lal K.B., Jaleel A. Development of a novel composite by coating polyacrylic fibres with hexacyanoferrates for the removal of Cs from radioactive liquid waste. J. Radioanal. Nucl. Chem. 1998. 238(1 – 2). p. 51—59.

Bondar Yu., Kuzenko S., Han D-H.Development of novel nanocomposite adsorbent based on potassium nickel hexacy- anoferrate-loaded polypropylene fabric // Nanoscale Res. Lett. 2014. 9. p. 180.

Бондарь Ю. В., Кузенко С. В., Сливинский В.М. и др.Новые композитные волокна для очистки природных и сточных вод от радионуклидов цезия.Ядерна фізика та енергетика. 2017. 18(1). c.106—114.

Бондарь Ю.В. Синтез нового адсорбента на основе полиакрилонитрильных волокон c осажденным слоем ферроцианида калия–меди для селективного извлечения цезия из загрязненных вод //Доп. НАН України. 2015. 1. c. 166-172.

Galysh V.V., Kartel M.T., Milyutin V.V., et al. Compo- site cellulose-inorganic sorbents for 137Cs recovery. J. Radioanal. Nucl. Chem. 2014. 301(2). p. 315 - 321.

Стрелко В. В., Милютин В. В., Гелис В. М. и др. Сорбция радионуклидов цезия на полукристаллических силикотитанатах щелочных металлов. Радиохимия. 2015. 57(1). с. 64 – 68.

Chang С-Y., Chau L-K., Hu W-P., et al. Nickel hexa- cyanoferrate multilayers on functionalized mesoporous silica supports for selective sorption and sensing of cesium //Micropor. Mesopor. Mat. 2008. 109 (1-3). p. 505—512

Эннан А.А.,Шихалеева Г.Н., Бабинец С.К. и др. Особенности ионно-солевого состава воды Куяльницкого лимана. Вісник ОНУ. Хімія. 2006. 11(1 - 2). c. 67—74.

Published

2023-05-17