TOXICOLOGICAL STUDY OF MOSS COVER OF PINE FORESTS IN BIOGEOCHEMICAL LANDSCAPE OF BACKGROUND AREA OF UKRAINIAN POLISSIA. PART 1. HEAVY METALS
DOI:
https://doi.org/10.32782/geotech2023.37.01Keywords:
Ukrainian Polissia, forest biogeocenoses, soils, moss cover, fractions of mosses, heavy metals, concentration, intake, coefficient of biological absorption.Abstract
Tasks of this study – to investigate levels of contamination of soils of background forest area of Ukrainian Polissia by heavy metals (Cu, Cd, Pb, Zn); to evaluate of concentrations of these heavy metals in fractions of mosses; to calculate values of coefficient of biological absorption of heavy metals by fractions of moss species. Study was conducted in July 2021 at 3 experimental plots in Zhytomyr Region, Povchanske forest division of branch «Lugyny Forestry». Vegetation was presented by association Molinio-Pinetum Matuszkiewicz (1973) 1981, and by moist fairly infertile pine site type (В3). Moss were sampled by fractions: Pleurozium schreberi and Dicranum polysetum – increment of 1-2 years, increment of earlier period; Polytrichum commune – increment of the first year, increment of the second year, increment of earlier period; Leucobryum glaucum, Sphagnum capillifolium and S. palustre – increment of the first year, increment of the second year, peat litter (semi-decomposed). Measurement of heavy metals content was conducted on atomic-absorption spectrophotometer С-115-М1. Coefficient of biological absorption was used as an index of intensity accumulation of heavy metals by mosses in the chain «soil – moss». Concentrations of heavy metals in 10-cm soil layer changed in such range: Pb > Zn > Cu > Cd; in absolute values (mg·kg-1) – 3,75±0,06; 3,56±0,10; 1,10±0,05; 0,002±0,00. Specific distribution in fractions of all studied moss species – terrestrial and paludal – was found for concentrations of Cu – maximal concentration was in the increment of the first year with decrease to the increment of the second year and lower – to the old moss fraction. Opposite distribution in moss fractions was observed for Zn and Pb in all studied moss species. More complicated distribution in moss fractions was observed for concentrations of Cd. For terrestrial mosses, such as Pleurozium schreberi, Dicranum polysetum and Polytrichum commune this distribution was similar – decrease Cd concentrations from increment of the first year to increment of the second year and to the lower part of mosses, but for Sphagnum spp. was differ. An important conclusion can be made that ranged row of heavy metals accumulated in the upper moss part (increment of the first year) looks like this: Cd > Cu > Zn > Pb; in the increment of the second year – Cd > Zn > Cu > Pb; in the lower part of moss cover – Cd > Zn > Pb > Cu. Also general conclusion can be made that intake of each heavy metal is species-dependent as well as distribution of its concentration among moss fractions.
References
Вірченко, В. M., Нипорко, С. O. (2022) Продромус спорових рослин України: Бріофіти. Під ред. П. M. Царенка. Київ : Наукова думка. 176 с.
Горошко, М. П., Миклуш, С. І., Хомюк, П. Г. (2004) Біометрія. Львів : Камула. 285 с.
Дубина, Д. В., Дзюба, Т. П., Емельянова, С. М., Багрикова, Н. О., Борисова, О. В., Борсукевич, Л. М., Винокуров, Д. С., Гапон, С. В., Гапон, Ю. В., Давидов, Д. А., Дворецький, Т. В., Дідух, Я. П., Жмуд, О. І., Козир, М. С., Коніщук, В. В., Куземко, Г. А., Пашкевич, Н. А., Рифф, Л. Е., Соломаха, В. А., Фельбаба-Клушина, Л. М., Фіцайло, Т. В., Чорна, Г. А., Чорней, І. І., Шеляг-Сосонко, Ю. Р., Якушенко, Д. М. (2019)
Продромус рослинності України. Київ : Наукова думка. 783 с.
Орлов, О. О. (2021) Мохоподібні (Bryobionta) як тест-об’єкти біогеохімічної індикації атмосферних випадань важких металів та радіонуклідів у навколишньому середовищі Європи. Аналітичний огляд. Геохімія техногенезу. 5(33): 54–69. DOI: 10.15407/10.15407/geotech2021.33.055.
Погребняк, П. С. (1931) Основи типологічної класифікації та методика складати її. Сер. наук. вид. ВНДІЛГА. Харків. Вип. 10. С. 28–35.
Bates, J.W., Bakken, S. (1998), Nutrient retention, desiccation and redistribution in mosses. Bryology in the Twenty-first Century. Eds. J.W. Bates, N.W. Ashton, J.G. Duckett. Leeds: Maney Publishers and BBS: 293–304.
Braun-Blanquet, J. (1964), Pflanzensoziologie – Grundzüge der Vegetationskunde. 3rd edition. Wien: Springer, XIV + 865 p.
Classification of plant communities (Handbook of Vegetation Science) (1978), 2nd edition. Ed. R.H. Whittaker. The Hague:
Dr. W. Junk Publishers, 416 p.
Florek, M., Mankovska, B., Oszlanyi, Y., Frontasyeva, M.V., Ermakova, E., Pavlov, S. S. (2007), The Slovak heavy metals survey by means the Bryophyte technique. Ekológia (Bratislava), 26(1): 99–114.
Garger, Е.К. (1994), Air concentrations of radionuclides in the vicinity of Chernobyl and the effects of resuspension.
Journal of Aerosol Science, 25: 745–753.
Garland, J.A., Pomeroy, I.R. (1994), Resuspension of fall-out material following the Chernobyl accident. Journal of Aerosol Science, 25(5): 793–806. https://doi.org/10.1016/0021-8502(94)90047-7.
Gjengedal, E., Steinnes, E. (1990), Uptake of metal ions in moss from artificial precipitation. Environmental Monitoring and Assessment, 14: 77–87. DOI: 10.1007/BF00394359.
Halleraker, J.H., Reimann, C., De Caritat, P., Finne, T.E., Kashulina, G., Niskavaara, H., Bogatyrev, I. (1998), Reliability of moss (Hylocomium splendens and Pleurozium schreberi) as a bioindicator of atmospheric chemistry in the Barents region: interspecies and field duplicate variability. Science of the Total Environment. 218: 123–139. PII S0048-9697 98 00205 – 8.
Harmens, H., Buse, A., Buker, P., Norris, D., Mills, C., Wiliams, B., Reynoids, B., Ashenden, T.W., Rühling, A., Steinnes, E.
(2004), Heavy metal concentrations in European mosses: 2000/2001 survey. Journal of Atmospheric Chemistry, 30: 425436. DOI: 10.1007/s10874-004-1257-0.
Harmens, H., Norris, D.A., Steinnes, E., Kubin, E., Piispanen, J., Alber, R., Aleksiayenak, Y., Blum, O., Coşkun, M., Dam, M., De Temmerman, L., Fernández, J.A., Frolova, M., Frontasyeva, M., González-Miqueo, L., Grodzinska, K., Jeran, Z., Korzekwa, S., Krmar, M., Kvietkus, K., Leblond, S., Liiv, S., Magnússon, S.H., Mankovská, B., Pesch, R., Rühling, Å., Santamaria, J.M., Schröder, W., Spiric, Z., Suchara, I., Thöni, L., Urumov, V., Yurukova, L., Zechmeister, H.G. (2010), Mosses as biomonitors of atmospheric heavy metal deposition: Spatial patterns and temporal trends in Europe. Environmental Pollution, 158: 3144–3156. DOI: 10.1016/j.envpol.2010.06.039.
Markert, B., Weckert, V. (1989), Fluctuations of element concentrations during the growing season of Polytrichum formosum. Water, Air & Soil Pollution, 43: 177–189.
Motyka, O., Macečkova, B., Seidlerová, J., Krejči, B. (2011), Novel technique of active biomonitoring introduced in the Czech Republic: bioaccumulation of atmospheric trace metals in two moss species. GeoScience Engineering. LVII(3): 30–36.
Økland, R.H., Steinnes, E. and Økland, T. (1997), Element concentrations in the boreal forest moss, Hylocomium splendens: variation due to segment size, branching patterns and pigmentation. Journal of Bryology, 19(4): 673–686. DOI: 10.1179/jbr.1997.19.4.671.
Økland, T., Økland, R., Steinnes, E. (1999), Element concentrations in the boreal forest moss Hylocomium splendens: variation related to gradients in vegetation and local environmental factors. Plant and Soil, 209: 71–83. DOI: 10.1023/A:1004524017264.
Orlov, O. (2022), Evaluation of mosses and lichens as test-objects of monitoring of 137Cs contamination of pine forest biogeocenoses in Ukrainian Polissia. Geochemistry of Technogenesis, 7(35): 33–37. DOI: 10.32782/geotech2022.35.05.
Poikolainen, J., Kubin, E., Piispanen, J., Karhu, J. (2004), Atmospheric heavy metal deposition in Finland during 1985–2000 using mosses as bioindicators. Science of the Total Environment, 318: 171–185.
POWO. Plants of the World Online. https://powo.science.kew.org.
Reimann, C., Niskavaara, H., Kashulina, G., Filzmoser, P., Boyd, R., Volden, T., Tomilina, O., Bogatyrev, I. (2001), Critical remarks on the use of terrestrial moss (Hylocomium splendens and Pleurozium schreberi) for monitoring of airborne pollution. Environmental Pollution, 113: 41–57.
Rosman, K.J., Ly. Ch., Steinnes. E. (1998), Spatial and temporal variation in isotopic composition of atmospheric lead in Norvegian moss. Environmental Science and Technology, 32: 2542–2546.
Rühling, A. and Tyler, C. (1968), An ecological approach to the lead problem. Botaniska notiser, 122: 321–342.
Shaw, A.J., Goffinet, B. (2000), Bryophyte biology. Cambridge: Cambridge University Press, 348 p.
State of the terrestrial environment in the joint Finnish, Norwegian and Russian border area on the basis of bioindicators (2014), Final technical report of the Pasvik Environment Monitoring Programme. Eds. Rautio P., Poikolainen J. Kopijyvä Oy, Kuopio, 17 p.
Steinnes, E. (2008), Use of mosses to study atmospheric deposition of trace elements: contributions from investigations in Norway. International Journal of Environment and Pollution, 32(4): 499–508. DOI: 10.1504/IJEP.2008.018413.
Szarek-Łukaszewska, G., Grodzinska, K., Braniewski, S. (2002), Heavy metal concentration in the moss Pleurozium schreberi in the Niepolomice forest, Poland: changes during 20 years. Environmental Monitoring and Assessment, 79: 231–237.
Task Force on Health, Health Risks of heavy metals from long-range transboundary air pollution (2007). Bonn: World Health Organization, http://www.euro.who.int.
Tyutyunnik, Yu., Daunis-i-Estadella, J., Shabatura, O., Blum, O., Onyschenko, A., Bunina, A. (2019), Regional geostatistical analysis of the atmogeochemical field of the central part of Northern Ukraine with the briochemical indication. 18th Intern. Conf. on Geoinformatics – Theoretical and Applied Aspects. European Association of Geoscientists & Engineers. Vol. 2019: 1–5. DOI: https://doi.org/10.3997/2214-4609.201902097.
Tukey, Jr.H.B. (2003), The leaching of substances from slants. Annual Review of Plant Physiology, 21(1): 305–324. DOI: 10.1146/annurev.pp.21.060170.001513.
Waldman, J.M., Hoffmann, M.R. (1988), Nutrient leaching from pine needles impacted by acidic cloudwater. Water, Air & Soil Pollution, 37: 193–201. https://doi.org/10.1007/BF00226491.