INFLUENCE OF ACID MODIFICATION ON HYDROPHOBIC/HYDROPHILIC PROPERTIES OF CLINOPTILOLITE
DOI:
https://doi.org/10.32782/geotech2023.37.02Keywords:
clinoptilolite, adsorption, acid/base modification, hydrophobic/hydrophilic properties.Abstract
Zeolites are natural microporous minerals of the hydrated aluminosilicate group of alkali and alkaline earth metals with a framework crystal structure. The open frame-hollow structure of zeolites with a rigidly fixed size of entrances to cavities and channels determines the specific adsorption, ion-exchange and molecular-sieve properties of zeolites. Therefore, zeolites are widely used for purification of natural waters and industrial effluents, air, soils, biological samples, concentration, separation and separation of heavy, alkaline and alkaline earth metals, and also for separation and adsorption of gases as catalysts. An important parameter of zeolites is the atomic ratio of the main elements of the Si/Al crystalline framework, which determines such properties of the mineral as the maximum ion-exchange capacity and selectivity to a certain ion, thermal, hydrothermal and radiation stability, surface characteristics and molecular sieve features, catalytic activity and other. Clinoptilolite is one of the most common natural minerals of zeolite. Zeolites are modified by physical or chemical methods to increase sorption capacity, selectivity to specific ions, and change surface properties. The acid/alkaline modification of clinoptilolite has been shown to control its hydrophobic/hydrophilic properties. As a result of acid treatment, Al is removed from the crystalline structure, resulting in an increasing in the specific surface area of the samples, a reduction in the width of the pores, and a reduction in the adsorption of water vapor. It has been shown that acid treatment leads to an increase in the hydrophobic properties of clinoptylolite as a result of a decrease in the number of Si-O-Al polar bonds.
References
Breck D. Zeolite molecular sieves. Structure, chemistry and use. New York: Wiley, 1974. 781 p.
Tsitsishvili G.V., Andronikashvli T.G., Kirov G.R., Filizova L.D. Natural Zeolites. London: Ellis Horwood, 1992. 297 p.
Armbruster T., Gunter M.E. Crystal structures of natural zeolites. Rev. Mineral. Geochem. 2001. 45. p. 1–67.
XXu R., Pang W., Yu J., et al. Chemistry of Zeolites and related Porous Materials: Synthesis and Structure. John Wiley and Sons (Asia) Pte, Ltd., 2007. 679 p.
Curkovic, L., Cerjan-Stefanovic, S., Filipan, T. Metal ion exchange by natural and modified zeolite. Water Res. 1996. 31. p. 1379–1382.
Ракитська Т. Л., Кіосе Т. О., Труба А. С., Раскола Л.А. Фізико-хімічні властивості природних сорбентів та металокомплексних каталізаторів на їх основі : навчальний посібник для студентів хімічного факультету за спеціальністю 102 Хімія. Одеса: Одеський національний університет імені І. І. Мечникова, 2018. 152 с.
Korkuna O., Leboda R., Skubiszewska-Zie¸ba J., et al. Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Micropor. Mesopor. Mater. 2006. 87. p. 243–254.
de Magalhães L.F., da Silva G.R., Peres A.E.C. Zeolite Application in Wastewater Treatment. Adsorpt. Sci. Technol. 2022. p. 1–26.
Zeolites: Science and Technology. – Boston, USA: Nijhoff Publishers, 1984. 240 р.
Gorimbo J., Taenzana B., Muleja A. A., et al. Adsorption of cadmium, nickel and lead ions: equilibrium, kinetic and selectivity studies on modified clinoptilolites from the USA and RSA. Environ. Sci. Pollut. Res. 2018. 25. p. 30962–30978.
Kennedy D. A., Tezel F. H. Cation exchange modification of clinoptilolite – screening analysis for potential equilibrium and kinetic adsorption separations involving methane, nitrogen and carbon dioxide. Micropor. Mesopor. Mater. 2018. 262. p. 235–250.
Muir B., Wołowiec M., Bajda T., et al. The removal of organic compounds by natural and synthetic surfacefunctionalized zeolites: a mini-review. Mineralogia. 2017. 48. P. 145–156.
Garcia-Basabe Y., Rodriguez-Iznaga I., De L.C., et al. Step-wise dealumination of natural clinoptilolite: structural and physicochemical characterization. Micropor. Mesopor Mater. 2010. 135. p. 187–196.
Vasylechko V. O., Gryshchouk G. V., Kuz’ma Yu. B., et al. Adsorption of cadmium on acid-modified Transcarpathian clinoptilolite. Micropor. Mesopor. Mater. 2003. 60. p. 183–196.
Ong L.H., Dömök M., Olindo R., et al. Dealumination of HZSM-5 via steam-treatment. Micropor. Mesopor. Mater. 2012. 164. p. 9–20.
Wang C., Cao L.Y., Huang J.F. Influences of acid and heat treatments on the structure and water vapor adsorption property of natural zeolite. Surf. Interface Anal. 2017. 49. p. 1249–1255.
Matias P., Couto C.S., Graça I., et al. Desilication of a ton zeolite with NaOH: influence on porosity, acidity and catalytic properties. Appl. Catal. A Gen. 2011. 399. P. 100–109.
Ates A. Effect of alkali-treatment on the characteristics of natural zeolites with different compositions. J. Colloid Interface Sci. 2018. 523. p. 266–281.
Tsitsishvili V.G., Dolaberidze N.M., Nijaradze M.O. et al., Acid and thermal treatment of natural heulandite. Chemistry, Physics and Technology of Surface. 2023. 14 (4). p. 519–533.
Wang C., Leng S., Guo H., et al. Acid and alkali treatments for regulation of hydrophilicity/hydrophobicity of natural zeolite. Applied Surf. Sci. 2019. 478. p. 319–326
Wang С., Guo H., Leng S., et al. Regulation of hydrophilicity/hydrophobicity of aluminosilicate zeolites: a review. Crit. Rev. Solid State Mater. Sci. 2021. 46:4. P. 330–348.
Tian H., Liu S., Han Y. et al. Acid treatment to adjust zeolite hydrophobicity for olefin hydration reaction. J. Porous Mater. 2022. 29. P. 713–722.
Takeuchi M., Kimura T., Hidaka M., et al. Photocatalytic Oxidation of Acetaldehyde with Oxygen on TiO2/ZSM-5 Photocatalysts: Effect of Hydrophobicity of Zeolites. J. Catal. 2007. 246. P. 235–240.