TOXICOLOGICAL STUDY OF MOSS COVER IN PINE FORESTS OF BIOGEOCHEMICAL LANDSCAPE IN BACKGROUND AREA OF UKRAINIAN POLISSIA. PART 2. RADIONUCLIDES – 137CS

Authors

DOI:

https://doi.org/10.32782/geotech2024.38.01

Keywords:

Ukrainian Polissia, forest biogeocenoses, soil, moss cover, fractions of mosses, 137Cs activity concentration, coefficient of 137Cs biological absorption, spatial heterogeneity, fractal geometry, Vicsek fractal

Abstract

Tasks of this study – to evaluate interspecific differences of 137Cs accumulation by mosses; analyze 137Cs distribution among fractions of mosses; monitor multiyear dynamics of 137Cs content and values of 137Cs concentration ratio in mosses in 2002–2022; calculate dependence between 137Cs activity concentration in Dicranum polysetum and in the soil on the basis of statistical systematical approach; identify spatial heterogeneity of 137Cs activity concentration in moss cover and in the soil and to evaluate it quantitative using fractal geometry. Study was conducted in two stages: in 2002 and 2022 at 3 experimental plots in Zhytomyr Region, Korosten district, Povchanske forest division of Вranch “Lugyny Forestry” of State Enterprise “Forests of Ukraine”. Vegetation was presented by pine forest of association Molinio-Pinetum Matuszkiewicz (1973) 1981, by fairly infertile pine site type (В3). Mosses were sampled by fractions: increment of the 1st year, increment of the 2nd year, increments of earlier period and peat litter. The activity concentration of 137Cs was measured using SEG-001 AKP-С-150 spectrometer analyzer with scintillation detector BDEG-20-R2. Coefficient of biological absorption (СВА) was used as an index of intensity of accumulation of 137Cs in the chain “soil – moss”. In 2002 according with the mean 137Cs content in the increment of the 1st year (increments of 1–2 years) moss species can be placed in such order: Leucobryum glaucum > Dicranum polysetum > Polytrichum commune > Sphagnum palustre > S. capillifolium > Pleurozium schreberi, with interspecies differences of this index in 2,2 times. In 2002 and 2022 distribution of 137Cs activity concentration among fractions of moss species was similar: maximum values of 137Cs activity concentration were in alive, apical parts – increment of the 1st year and increments both the 1st and the 2nd years. Below this part a decrease of this index was observed in increment of the 2nd year and increments of the earlier period and peat litter. In all moss species in 2002-2022 137Cs content significantly decreased – from 2,46 times in Dicranum polysetum to 2 times in Sphagnum capillifolium. Despite a significant decrease of 137Cs activity concentration in fractions of all studied moss species mean values of СВА in 2022 decreased slightly in comparison with those of 2002. In 2022 according with the mean values of СВА moss species can be placed as follows: Leucobryum glaucum (7,42 ± 0,49) > Polytrichum commune (6,72 ± 0,45) > Sphagnum palustre (6,15 ± 0,54) > Dicranum polysetum (6,11 ± 0,43) > S. capillifolium (5,99 ± 0,56) > Pleurozium schreberi (2,97 ± 0,18). Dependence of 137Cs activity concentration in the soil from 137Cs activity concentration in Dicranum polysetum was linear, close (r = 0,76) and reliable (p = 0,000). Spatial heterogeneity of 137Cs contamination of moss cover and soil was high and had a focal character. Decreasing of mean value of 137Cs activity concentration in moss cover and in the soil depending on the grid step is a confirmation of its fractal distribution. We proposed to replace full sampling matrix by Viсsek fractal matrix, with sampling only on central column and central line or on the main diagonals of full matrix, which allows to reduce total number of samples in 5 times, with relative differences of mean values of 137Cs activity concentration in moss and soil in comparison with full matrix less than ±10%.

References

Головко, О.В. (2020), Міграція та перерозподіл 137Cs в екосистемах боліт Західного Полісся України. Автореф. дис. … канд. сільськогосподарських наук. Спеціальність 03.00.16 – екологія. Рівне. 26 с.

Горкавий, В.К. (2009), Статистика: підручник. Київ: Аграрна освіта. 511 с.

Грабар, І. (2023), Синтез мультифракталів. Наукова монографія. Житомир: Поліський національний університет. 200 с. ISBN 978-617-8085-98–8.

Доповідь про стан ядерної та радіаційної безпеки в Україні у 2022 році (2023). Київ: Державна інспекція ядерного регулювання України. 88 с. Режим доступу: https://snriu.gov.ua/storage/app/sites/1/%202022.pdf.

Мельник, В.В., Курбет, Т.В. (2018а), Особливості накопичення цезію-137 у моховому покриві лісів Українського Полісся. Наукові горизонти. 2 (65): 51–57. http://ir.znau.edu.ua/handle/123456789/9498.

Мельник, В.В., Курбет, Т.В. (2018b), Радіоактивне забруднення 137Cs мохово-лишайникового покриву в умовах свіжого субору. Науковий вісник НЛТУ України. 28 (3): 88–92. https://doi.org/10.15421/40280318.

Орлов, О.О. (2000), Роль сфагнового покриву у перерозподілі потоків калію та 137Cs в екосистемах мезооліготрофних боліт. Укр. ботан. журн. 57 (6): 715–724.

Орлов, О.О. (2021), Закономірності міграції 137Cs на геохімічних бар’єрах крайової зони мезотрофного болота в Українському Поліссі. Геохімія техногенезу. 6 (34): 58–70. https://doi.org/10.15407/10.15407/geotech2021.34.058.

Орлов, О.О., Долін, В.В. (2010), Біогеохімія цезію-137 у лісоболотних екосистемах Українського Полісся. Київ: Наук. думка. 198 с.

Погребняк, П.С. (1931), Основи типологічної класифікації та методика складати її. Серія наук. вид. ВНДІЛГА. Харків. 10: 28–35.

Adrović, F., Damjanović, A., Adrović, J., Kamberović, J. and Hadžiselimović, N. (2017), Study of 137Cs concentration activity in mosses of Bosnia and Herzegovina. International Journal of Modern Biological Research. 5: 32–41.

Balance, S., Kristiansen, K.A., Skogaker, N.T., Tvedt, K.E., Christensen, B.E. (2012), The localisation of pectin in Sphagnum moss leaves and its role in preservation. Carbohydrate Polymers. 87 (2): 1326–1332. https://doi.org/10.1016/j.carbpol.2011.09.020.

Bioindicators & Biomonitors. Principles, Concepts and Applications (2003), Eds. B.A. Markert, A.M. Breure, H.G. Zechmeister. Amsterdam – Boston – London – New York – Oxford – Paris – San Diego – San Francisco – Singapore – Sydney – Tokyo: Elsevier Applied Science. 1017 p.

Bossew, P., Lettner, H., Hubmer, A.K. (1996), Spatial variability of fall-out 137Cs. Proc. of the Intern. Symp. on Radioecology 1996 “Ten years terrestrial radioecological research following the Chernobyl accident” Eds. M. Gerzabek, G. Desmet, B.J. Howard et al. Vienna. P. 179–186.

Cevik, U. and Celik, N. (2008), Ecological half-life of Cs-137 in mosses and lichens in the Ordu province, Turkey. Journal of Environmental Radioactivity. 100 (1): 23–28. DOI: 10.1016/j.jenvrad.2008.09.010.

Clymo, R.S. (1978), A model of peat bog growth. In: O.W. Heal, and D.F. Perkins (eds.), Production Ecology of British Moors and Montane Grasslands. Berlin: Springer Verlag. P. 187–223.

Čučulović, A., Čučulović, R., Sabovljević, M., Veselinović, D. (2012a), Activity concentrations of 137Cs and 40K in mosses from Spas in eastern Serbia. Arch. Biol. Sci., 64 (3): 917–925. DOI: 10.2298/ABS1203917Č.

Čučulović, A., Popović, D., Čučulović, R. & Ajtić, J. (2012b), Natural radionuclides and 137Cs in moss and lichen in Eastern Serbia. Nuclear Technology & Radiation Protection, 27 (1): 44–51. DOI: 10.2298/NTRP1201044.

Dainty, J. and Richter, C. (1993), Ion behavior in Sphagnum cell walls. Advances in Bryology, 5. Biology of Sphagnum. Berlin-Stuttgart: J. Cramer. P. 107–127.

Dolgushin, D., Korobova, E., Baranchukov, V., Dogadkin, N. (2020), Detailed study of 137Cs distribution in soil-litter-moss cover within the undisturbed woodland test site in the Chernobyl abandoned zone. EGU General Assembly 2020, EGU2020-339, https://doi.org/10.5194/egusphere-egu2020-339, 2019OUT.

Dołhańczuk-Śródka, A., Ziembik, Z., Wacławek, M. & Hyšplerová, L. (2011), Transfer of cesium-137 from forest soil to moss Pleurozium schreberi. Ecological Chemistry and Engineering. 18 (4): 509–516.

Dragović, S., Mihailović, N., Gajić, B. (2010), Quantification of transfer of 238U, 226Ra, 232Th, 40K and 137Cs in mosses of a semi-natural ecosystem. Journal of Environmental Radioactivity. 101: 159–164. DOI: 10.1016/j.jenvrad.2009.09.011.

Dragović, S., Nedić, O., Stanković, S., Bačic, G. (2004), Radiocesium accumulation in mosses from highlands of Serbia and Montenegro: chemical and physiological aspects. Journal of Environmental Radioactivity. 77: 381–388. DOI: 10.1016/j.jenvrad.2004.04.007.

Fränzle, O. (2003), Bioindicators and environmental stress assessment. In: Bioindicators & Biomonitors. Principles, Concepts and Applications, Eds. B.A. Markert, A.M. Breure, H.G. Zechmeister. Amsterdam – Boston – London – New York – Oxford – Paris – San Diego – San Francisco – Singapore – Sydney – Tokyo: Elsevier Applied Science. P. 41–84.

Garger, Е.К. (1994), Air concentrations of radionuclides in the vicinity of Chernobyl and the effects of resuspension. Journal of Aerosol Science,

: 745–753.

Gerdol, R., Degetto, S., Mazzotta, D., Vecchiati, G. (1994). The vertical distribution of the Cs-137 derived from Chernobyl fallout in the uppermost Sphagnum layer of two peatlands in the southern Alps (Italy). Water, Air & Soil Pollution. 75: 93–106.

Giovani, C., Nimis, P.L., Bolognini, G., Padovani, R., Usco, A. (1994), Bryophytes as indicators of radiocesium deposition in northeastern Italy. The Science of the Total Environment. 157: 35–43.

Glime, J.M. (2017), Nutrient Relations: Requirements and Sources. Chapt. 8-1. In: J.M. Glime, Bryophyte Ecology. Vol. 1. 8-1-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. 208 p. Last updated 3 March 2017 and available at: http://digitalcommons.mtu.edu/bryophyte-ecology/.

Grabar, I.G., Kubrak, Yu. O. (2023), Synthesis of multifractals by Brownian dynamics of a point in a field of N central forces. 16th CHAOS Conference Proceedings, 13–16 June 2023, Heraklion, Crete, Greece,. ISAST.

Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments (2010). Technical Report Series № 472. Vienna: International Atomic Energy Agency. 208 p. http://www-pub.iaea.org/MTCD/publications/PDF/trs472_web.pdf.

Hodgetts, N.G., Söderström, L., Blockeel, T.L., Caspari, S., Ignatov, M.S., Konstantinova, N.A., Lockhart, N., Papp, B., Schröck, C., Sim-Sim, M., Bell, D., Bell, N.E., Blom, H.H., Bruggeman-Nannenga, M.A., Brugués, M., Enroth, J., Flatberg, K.I., Garilleti, R., Hedenäs, L., Holyoak, D.T., Hugonnot, V., Kariyawasam, I., Köckinger, H., Kučera, J., Lara, F. & Porley, R.D. (2019), An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus. Journal of Bryology. 42 (1): 1–116. DOI: 10.1080/03736687.2019.1694329.

Iuran, A.R., Hofmann, W., Lettner, H., Türk, R., Cosma, C. (2011), Long term study of Cs-137 concentrations in lichens and mosses. Romanian Journal of Physics, 56 (7–8): 983–992.

Jefanova, O., Marciulioniene, E.D. and Luksiene, B. (2014), The spread of 137Cs in terrestrial ecosystems of the Ignalina NPP and other Lithuanian regions. Research Journal of Chemistry and Environment. 18 (1): 1–6.

Kłos, A., Czora, M., Rajfur, M., Wacławek, M. (2012), Mechanisms for translocation of heavy metals from soil to epigeal mosses. Water, Air & Soil Pollution. 223: 1829-1836. DOI: 10.1007/s11270-011-0987-2.

Mandelbrot, B.B. (1982), The fractal geometry of nature. New York – Oxford: W.H. Freeman & Co. 468 p.

Mattsson, S., Liden, K. (1975), 137Cs in carpets of the forest moss Pleurozium schreberi, 1961–1973. Oikos. 26: 323–327.

Mihalík, J., Bartusková, M., Hölgye, Z., Jezková, T., Henych, O. (2014), Fractionation of 137Cs and Pu in natural peatland. Journal of Environmental Radioactivity. 134: 14–20. https://doi.org/10.1016/j.jenvrad.2014.02.015.

Oguri, E., Deguchi, H. (2018), Radiocesium contamination of the moss Hypnum plumaeforme caused by the Fukushima Dai-ichi Nuclear Power Plant accident. Journal of Environmental Radioactivity. 192: 648–653. https://doi.org/10.1016/j.jenvrad.2018.02.013.

Oldfield, E, Appleby, P.G., Cambray, R.S., Eakins, J.D., Barber, K.E., Battarbee, R.W., Pearson, G.R., Williams, J.M. (1979), 210 Pb, 137 Cs and 239 Pu profiles in ombrotrophic peat. Oikos. 33 (1): 40-45. https://doi.org/10.2307/3544509.

Orlov, О.О., Grabar, I.G. (2023), Radioactive fallouts: fractal dimension. Актуальні питання радіобіології – 2023. Мат. 8-го з’їзду Радіобіологічного товариства України (м. Житомир, 21–25 серпня 2023 р.). Ред.: канд. біол. наук Н. К. Куцоконь, д-р біол. наук, проф. Н. М. Рашидов. Житомир. С. 84.

Orlov, O. (2022), Evaluation of mosses and lichens as test-objects of monitoring of 137Cs contamination of pine forest biogeocenoses in Ukrainian Polissia. Геохімія техногенезу. 7 (35): 33–37. https://doi.org/10.32782/geotech2022.35.05.

Proctor, M.C. (2000), The bryophyte paradox: tolerance of desiccation, evasion of drought. Plant Ecology. 151: 41–49. https://doi.org/10.1023/A:1026517920852.

Proctor, M.C.F. & Tuba, Z. (2002), Poikilohydry and homoihydry: anthithesis of spectrum of possibilities? New Phytologist. 156 (3): 327–349. https://doi.org/10.1046/j.1469-8137.2002.00526.x

Rühling, A. and Tyler, C. (1968), An ecological approach to the lead problem. Botaniska notiser, 122: 321–342.

Schmidt, B., Kegler, F., Steinhauser, G., Chyzhevskyi, I., Dubchak, S., Ivesic, C., Koller-Peroutka, M., Laarouchi, A., Adlassnig, W. (2023), Uptake of radionuclides by Bryophytes in the Chornobyl Exclusion Zone. Toxics, 11 (3): 218. https://doi.org/ 10.3390/toxics11030218.

Steinnes, E. & Njåstad, O. (1993), Use of mosses and lichens for regional mapping of 137Cs fallout from the Chernobyl accident. Journal of Environmental Radioactivity. 21: 65–73.

Tyler, G. (1990), Bryophytes and heavy metals: a literary review. Botanical Journal of Linnaean Society. 104: 231–253.

Van Tooren, B.F., Van Dam, D., During, H.J. (1990), The relative importance of precipitation and soil as sources of nutrients for Calliergonella cuspidata (Hedw.) Loeske in chalk grassland. Functional. Ecology. 4: 101–107.

Vinichuk, M., Dahlberg, A., Rosén, K. (2011), Cesium (137Cs and 133Cs), potassium and rubidium in macromycete fungi and Sphagnum plants. Radioisotopes – Application in Physical Sciences. Ed. N. Singh. Croatia, Rijeka, InTech: 279–311.

Vinichuk, M., Johanson, K.J., Rydin, H. and Rosén, K. (2010), The distribution of Cs-137, K, Rb and Cs in plants in a Sphagnum-dominated peatland in eastern central Sweden. Journal of Environmental Radioactivity. 101 (2): 170–176. http://dx.doi.org/10.1016/j.jenvrad.2009.10.003.

Ying, Z & Liang-Dong, G. (2007), Arbuscular mycorrhizal structure and fungi associated with mosses. Mycorrhiza. 17: 319–325. DOI: 10.1007/s00572-007-0107-8.

Zarubina, N. (2023), Circulation of 137Cs in various forest plants in the Chornobyl Exclusion Zone during the year. Ecologies. 4 (2): 310–324. DOI: https://doi.org/10.3390/ecologies4020020.

Downloads

Published

2024-09-13

Issue

Section

GEOLOGICAL SCIENCES