DETECTORS BASED ON Cd(Zn)Te SEMICONDUCTORS FOR X-RAY AND GAMMA RADIATION REGISTRATION

Authors

DOI:

https://doi.org/10.15407/geotech2020.32.071

Keywords:

CdTe, CdZnTe, laser irradiation, doping, barrier structure, p-n junction, diode, detector.

Abstract

This work presents the guidance on the results of the development of a laser doping technique and the creation of diode structures based on Cd(Zn)Te semiconductors, due to its attractive physical characteristics. The elements of this compound have relatively large atomic numbers, a significant cross section for photoelectric absorption, a sufficient band gap and, accordingly, can have a sufficiently high electrical resistance. All these are the advantages that make Cd(Zn)Te the main and promising material for nuclear detectors, which can operate at room temperature (without cooling) and, as numerous studies around the world show, intensive work is carried out on the design based on Cd(Zn)Te instruments for detecting and measuring x-ray and gamma radiation and imaging. The need for such a device is based on many important factors. One of the global problems of our time is the prevention of technological disasters, the elimination of their consequences and the prevention of terrorist acts. In Ukraine, solving these problems is of particular importance, since our state is one of the countries with a very degraded environment, in particular, due to radioactive contamination as a result of the Chernobyl disaster, ammunition disposal, technical problems in industry, etc. On the other hand, the solution of these problems causes intensive research all over the world in order to develop portable intelligent systems with the help of which it is possible to efficiently identify and distinguish dangerous objects and radionuclides, as well as to make an objective express analysis of the environment and materials for radioactivity. In addition to the necessary functional parameters, in particular, high energy resolution, these systems should be small in size, not energy-intensive in order to provide measurements for a long time and not require complex and special maintenance.

References

Zanio K. Cadmium telluride, Semiconductors and Semimetals. Vol. 13. New York: Academic Press, 1978. 235 p.

Sellin P.J. Recent advances in compound semiconductor radiation detectors. Nucl. Instrum. Methods A. 2003. Vol. 513. P. 332-339.

Owens A., Peacock A. Compound semiconductor radiation detectors. Nucl. In-strum. Methods A. 2004. Vol. 531. P. 18-37.

Yadav J.S., Savitri S., Malkar J.P. Near room temperature X-ray and γ-ray spectroscopic detectors for future space experiments. Nucl. Instrum. Methods A. 2005. Vol. 552. P. 399-408.

Takahashi T., et al.. High-resolution Schottky CdTe diode for hard X-ray and gamma-ray astronomy. Nucl. Instrum. Methods A. 1999. Vol. 436, issues 1-2. P. 111-119.

Kosyachenko L.A., et al.. Electrical characteristics of Schottky diodes based on semi-insulating CdTe single crystals. J. App. Phys. 2007. Vol. 101, No 1. P. 013704-1-013704-6.

Kosyachenko L.A., et al.. Surface-barrier p-CdTe-based photodiodes. Semicond. Sci. Technol. 1999. Vol. 14. P. 373-377.

Hatanaka Y., Niraula M., Nakamura A., Aoki T. Excimer laser doping for II-VI semiconductors. Appl. Surf. Sci. 2001. Vol. 175-176. P. 462-467.

Gnatyuk V.A., Aoki T., Hatanaka Y., Vlasenko O.I. Metal-semiconductor interfaces in CdTe crystals and modification of their properties by laser pulses. Appl. Surf. Sci. 2005. Vol. 244, No 1-4. P. 528-532.

Aoki T., et al.. Study of a CdTe high-energy radiation imaging device fabrication by excimer laser processing. Phys. Stat. Sol. (c). 2004. Vol. 1, No 4. P. 1050-1053.

Gnatyuk V.A., et al.. Defect formation in CdTe in the act of laser-induced doping and application to the manufacturing nuclear radiation detectors . Phys. Stat. Sol. (c). 2006. Vol. 3, No 4. P. 1221-1224.

Gnatyuk V.A., Vlasenko O.I., Levytskyi S.N., Aoki T. Electrical and photoelectric properties of M-p-n CdTe diodes. Proceed. of The 6th International Conference on Global Research and Education: Inter-Academia 2007 and The 2nd Inter-Academia for Young Researchers Workshop. 2007. Vol. I. P. 446-455.

Gnatyuk V.A., Aoki T., Gorodnychenko O.S., Hatanaka Y. Solid-liquid phase transitions in CdTe crystals under pulsed laser irradiation. Appl. Phys. Lett. 2003. Vol. 83, No 18. P. 3704-3706. 14. Gnatyuk V.A., Aoki T., Nakanishi Y., Hatanaka Y. Surface state of CdTe crystals irradiated by KrF excimer laser pulses near the melting threshold. Surf. Sci. 2003. Vol. 542. P. 142-149.

Байдуллаева А., Буллах М.Б., Власенко А.И., Ломовцев А.В., Мозоль П.Е. Динамика развития поверхностных структур в кристаллах р-CdTe при облучении импульсным лазерным излучением. ФТП. 2004. Т. 38, вып. 1. С. 26-29.

Байдуллаева А., Власенко А.И., Ломовцев А.В., Мозоль П.Е. Создание переключающих элементов с памятью лазерной обработкой кристаллов CdTe. Технология и конструирование в электронной аппаратуре. 2001. № 3. С. 36-37.

Golovan L.A., et al.. Evaporation effect on laser induced solid-liquid phase transitions in CdTe and HgCdTe. Solid State Commun. 1998. Vol. 108, No 10. P. 707-712.

Wei Su-Huai, Zhang, S.B. First-principles study of doping limits of CdTe. Phys. Stat. Sol. (b). 2002. Vol. 229. P. 305-310. 19. Gnatyuk V.A., et al.. Modification of the surface state and doping of CdTe and CdZnTe crystals by pulsed laser irradiation. Appl. Surf. Sci. 2009. Vol. 255. P. 9813-9816.

Байдуллаева А., Даулетмуратов Б.К., Власенко А.И., Гнатюк В.А., Мозоль П.Е. Фотоэлектрические свойства пленок теллурида кадмия, подвергнутых лазерному облучению. ФТП. 1993. Т. 27. С. 56-59.

C.P. Lambropoulos, et al.. The COCAE detector: an instrument for localization - identification of radioactive sources. IEEE Transactions on Nuclear Science, Vol. 58, Issue 5, Part 2 (2011) 2363-2370.

Published

2023-04-14