OPTIMIZATIONAL TASK SOLUTION OF STATIONARY POINTS PLACEMENT FOR OBSERVATION OF ATMOSPHERIC POLLUTION AT TECHNOGENICALLY LOADED TERRITORIES OF UKRAINE
DOI:
https://doi.org/10.15407/geotech2020.32.086Keywords:
atmospheric air, monitoring network, stationary observation points, placement optimization, computational.Abstract
Network of air pollution monitoring stations in Ukraine was built in the 1970s in accordance with the standards of the former USSR. Their con-figuration was not revised. During this period there were many changes in economy, industry, transport infrastructure, climatic conditions. It led to radical redistribution of technogenic load on air of Ukraine. Therefore, the existing network of posts today is no longer optimal. It does not allow to see real picture of pollution. This, in turn, does not make possible to make effective decisions on air quality management and public health risk in urban areas. This situation does not meet the pan-European requirements that Ukraine should comply with the Partnership and Cooperation Agreement between the European Union, the Member States and Ukraine. The adopted normative legal acts of Ukraine that one of the prior tasks of the existing air monitoring system development is theoretical substantiation and proposals preparation of optimized schemes for construction and operation of observation networks according to European requirements and standards. Therefore, development of mathe-matical tools for optimization problem solution of stationary points placement for observation of atmospheric pollution at technogenically loaded territories is an urgent scientific problem. Comparative analysis of different approaches to determining spatial configuration of the air monitor-ing network was identified. Their main shortcomings are identified. It makes almost impossible to use them in today's Ukraine. Mathematical formalization of optimization problem solution of stationary points placement for observation of atmospheric pollution at technogenically loaded territories is carried out. From the point of view of optimization theory, the obtained problem is dynamic, nonlinear, deterministic and discrete on a nonconvex domain. Due to considerable complexity of the problem, its solution (finding the optimal solution) is possible only by the method of complete search. However, application of this method is complicated due to the very large number of computational operations for large zones and agglomerations. So, there is a need to use new optimization algorithms. Two algorithms for optimization problem solving were developed. They are based on combination of greedy algorithm and complete search method. Testing of these algorithms (on the example of data from Kyiv) showed that they allow to obtain problem solution (close to optimal) much faster than the method of complete search.
References
Air pollution causes 800,000 extra deaths a year in Europe and 8.8 million worldwide. https://www.eurekalert.org/pub_releases/2019-03/esoc-apc030819.php
РД 52.04.186–89 Руководство по контролю загрязнения атмосферы. http://docs.cntd.ru/document/1200036406
Закон України від 28.02.2019 № 2697-VIII «Про Основні засади (стратегію) державної екологічної політики України на період до 2030 року». https://zakon.rada.gov.ua/laws/show/2697-19#Text
Постанова Кабінету Міністрів України від 5 грудня 2007 р. № 1376 «Про затвердження Державної цільової екологічної програми проведення моніторингу навколишнього природного середовища». https://zakon.rada.gov.ua/laws/show/1376-2007-%D0%BF#Text
Артемчук В.О. Математичні та комп'ютерні засоби для вирішення задачі розміщення пунктів спостережень мережі моніторингу стану атмосферного повітря : автореф. дис. канд. техн. наук. Київ. 2011. 20 с.
Каменева І.П., Яцишин А.В., Артемчук В.О., Попов О.О. Математичні моделі для визначення раціонального розміщення мережі ПСЗ атмосфери міста. Східно-Європейський журнал передових технологій. 2011. Вип. 3/4 (51). с. 7-11.
Яцишин А.В., Артемчук В.О. Математична постановка задачі оптимального розміщення пунктів спостережень мережі моніторингу стану атмосферного повітря. Збірник наукових праць Інституту проблем моделювання в енергетиці ім. Г.Є. Пухова. 2012. № 62. с. 12-18.
Верлан В.А. Оптимизация размещения сети постов мониторинга за загрязнением атмосферы в промышленном городе: дис. канд. геогр. наук. Одесса. 1999. 167 с.
Артемчук В.О. та ін. Теоретичні та прикладні основи економічного, екологічного та технологічного функціонування об’єктів енергетики. Київ: ТОВ «Наш формат», 2017. 312 с.
Gokalp O. (2020). An iterated greedy algorithm for the obnoxious p-median problem. Engineering Applications of Artificial Intelligence, Vol. 92. https://doi.org/10.1016/j.engappai.2020.103674
Lu, Y., Hao, J. K. and Wu, Q. (2019). Hybrid evolutionary search for the traveling repairman problem with profits. Information Sciences, Vol. 502, pp. 91–108. https://doi.org/10.1016/j.ins.2019.05.075
Yi, N., Xu, J., Yan, L. and Huang, L. (2020). Task optimization and scheduling of distributed cyber–physical system based on improved ant colony algorithm. Future Generation Computer Systems, Vol. 109, pp. 134–148. https://doi.org/10.1016/j.future.2020.03.051
Lim, G. J., Reese, J. and Holder, A. (2009). Fast and robust techniques for the euclidean p-median problem with uniform weights. Computers and Industrial Engineering, Vol. 57(3), pp. 896–905. https://doi.org/10.1016/j.cie.2009.03.016
Sharma, N., Batra, U. and Zafar, S. (2020). Remit Accretion in IOT Networks Encircling Ingenious Firefly Algorithm Correlating Water Drop Algorithm. Procedia Computer Science, Vol. 167, pp. 551–561. https://doi.org/10.1016/j.procs.2020.03.316