NOVEL COMPOSITE ADSORBENT BASED ON ION EXCHANGE RESIN WITH FERROCYANIDE PHASE FOR SELECTIVE RE-MOVAL OF CESIUM RADIONUCLIDES
Keywords:
composite adsorbent, ion exchange resin, potassium-copper ferrocyanide, selectivity, 137Cs, liquid radioactive waste.Abstract
The development of sorption technologies for the removal, separation, and concentration of radionuclides is an actual problem. In this respect the development of modern fabrication approaches of efficient adsorbents become especially relevant nowadays. Composite adsorbents with a sorption-active inorganic phase are of particular interest for selective removal of radionuclides. Ion exchange resins are a promising solid support matrix for fabrication of composite adsorbents by formation of inorganic nanoparticles on the surface/inside polymer granules by one stage experiment in situ. This article presents the experimental results on the fabrication of novel composite adsorbent based on macroporous polystyrene resin with sulfonic acid groups by in situ formation of potassium-nickel ferrocyanide phase and its application for selective removal of cesium ions from the model solu-tions with high concentrations of competitive sodium ions. The obtained results of X–ray diffraction and scanning electron-microscopy studies con-firm the formation of a ferrocyanide phase on the surface of polymer granules in the form of dense uniform layer of nanoscaled aggregates of potas-sium-copper ferrocyanide. Sorption experiments showed that composite polymer granules with the ferrocyanide phase are characterized by high selectivity to cesium ions in the presence of a significant excess of competitive sodium ions. The performed studies allow concluding that the synthe-sized composite adsorbent based on macroporous polymer granules with the ferrocyanide phase is of interest for practical use in sorption purifica-tion of natural waters and technological solutions from cesium radionuclides.
References
Waste treatment and immobilization technologies involving inorganic sorbents: IAEA-TECDOC-947. Vienna : IAEA, 1997. 238 p.
Мясоедова Г.В., Никашина В.А. Сорбционные материалы для извлечения радионуклидов из водных сред. Ж. Рос. хим. об-ва им. Д.И. Менделеева. 2006. L (5). c. 55—63.
Милютин В.В., Некрасова Н.А., Харитонов О.В., Фирсова Л.А., Козлитин Е.А. Сорбционные технологии в современной прикладной радиохимии. Сорбционные и хроматографические процессы. 2016. 16( 3). c.313-322.
Epimakhov V., Moskvin, L., Chetverikov V., et al. Treatment of water from spent nuclear fuel storage basins with ion-exchange resins modified with transition metal hexacyanoferrates. Radiochemistry. 2010. 52, p.610–612
Bondar Yu., Kuzenko S., Han D-H. Development of novel nanocomposite adsorbent based on potassium nickel hexacyanoferrate-loaded polypropylene fabric. Nanoscale Res. Lett. 2014. 9. p. 180.
Vincent T., Vincent C., Guibal E. Immobilization of Metal. Hexacyanoferrate Ion-Exchangers for the Synthesis of Metal Ion Sorbents - A Mini-Review. Molecules. 2015. 20. p. 20582 – 20613.
Galysh V.V., Kartel M.T., Milyutin V.V., et al. Composite cellulose-inorganic sorbents for 137Cs recovery. J. Radioanal. Nucl. Chem. 2014. 301(2). p. 315 - 321.
Воронина А. В, Куляева И. О., Гупта Д. К. Определение параметров селективной сорбции Сs природными и модифицированными ферроцианидами глауконитом и клиноптилолитом. Радиохимия. 2018. 60 (1). c. 35-40.
Епифанов А.О., Епифанова И.Э. Использование композитных сорбентов на основе гексацианоферратов для концентрации радиоцезия при проведении радиологического мониторинга природных вод. Международный журнал прикладных и фундаментальных исследований. 2018. 11 ( 1) . с. 181-187.
Watari K., Imai K., Ohmomo Y., et al. Simultaneous adsorption of Cs-137 and I-131 from water and milk on metal ferrocyanide-anion exchange resin. J. Nucl. Sci. Techn. 1988. 25 (5). p. 495–499.
Won H.-J., Moon J.-K., Jung C.-H., et al. Evaluation of ferrocyanide anion exchange resins regarding the uptake of Cs+ ions and their regeneration. Nuclear Engineer.Technol. 2008. 40 (6). p. 489–496.
Valsala, T.P., Roy, S.C., Shah, J.G., et al. Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger. J. Hazard. Mater. 2009. 166. p.1148–1153.
Тананаев И.В., Сейфер Г. Б., Харитонов Ю. Я. и др. Химия ферроцианидов. - М.: Наука, 1971. 320 с.
Chang С-Y., Chau L-K., Hu W-P., et al. Nickel hexacyanoferrate multilayers on functionalized mesoporous silica supports for selective sorption and sensing of cesium. Micropor. Mesopor. Mat. 2008. 109 (1-3). p. 505—512
Mimura H., Lehto J., Harjula R. Chemical and Thermal Stability of Potassium Nickel Hexacyanoferrate(II) . J. Nucl. Sci. Technol. 1997. 34(6). p. 582 - 587.
Didukh M. I., Lazaryev М. М. Use of natural minerals as sorbents of radiocaesium in agricultural production. Вісник ЖНАЕУ. 2010. № 1 (47, 1). с. 3-10.