PHASE FORMATION PROCESSES IN STEEL – BENTONITE INTERFACE IN THE CONDITIONS OF RADIOACTIVE WASTE GEOLOGICAL REPOSITORY EVOLUTION

Authors

DOI:

https://doi.org/10.15407/geotech2019.29.013

Keywords:

bentonite, steel corrosion, steel-bentonite interface, phase bentonite changes, illitization, Green Rust, ferrihydrite.

Abstract

The review work presents the analysis of up to date publications, including original ones, devoted to studying of nano-sized mineral phase formation processes on the interface surface of a bentonite buffer, mineral composition of which contains montmorillonite (70- 90 mass%), and a steel container in the conditions of radioactive waste geological repository. Probable changes of mineralogical, geomechanical and hydraulic properties of bentonite during evolution of geological disposal have been considered. It is expected that ferric saponite, berthierine or chlorite may be formed as a result of phase transformations of the buffer material. It has been demonstrated that saponitization of the buffer will not significantly decrease its isolation properties due to ability of saponite to swell and similarity of its physicochemical properties to montmorillonite, while montmorillonite illitization may cause buffer insulating properties loss. Characterization of the germinal structures of Green Rust and Fe- ferrihydrite which can be formed on the surface of a steel container under geological disposal conditions, and contribute to radionuclides fixation on the steel-bentonite interface is presented. It is emphasized that it is necessary to carry out complex experimental researches, which will allow prediction of bentonite buffer long-term stability in geological repository conditions, taking into account mineralogical-geochemical processes caused by corrosion of steel containers. A change of physicochemical conditions, mineralogical, geomechanical and hydraulic properties of the bentonite during geological disposal facilities operation and closure which can lead to decrease of buffer insulating properties is considered. Particular attention need to be paid for the analysis of the processes, taking place on the bentonite buffer steel container interface. It has been shown that formation on the surface of old germinal structures of Green Rust and ferrihydride and their phase transformations into sorption-active phases of ferrum oxyhydroxides and oxides can become an additional mechanism for fixation of mobile forms of radionuclides and transfer them to a less mobile and toxic state by means of reduction. During contact of the ground- water saturated bentonite buffer with the steel surface, mineralogical changes of the bentonite are directed to processes of saponitization and beidelitization. While saponitization is not critical to buffer isolating properties because of the ability of saponite to swell, partial or complete formation of beidelite substantially worsens them. One of the main processes that can become critical for the bentonite isolation properties is illitization of montmorillonite, the rate of which depends on temperature, chemical composition of the aqueous medium (pH and alkaline cation concentration, especially K+), degree of bentonite saturation with water, and the ratio between dispersion phase and dispersion medium. While a predictive estimate shows impossibility of buffer illitization due to low temperature, the use of external building materials, in particular, cements may shift the balance and lead to transformation of the bentonite to illite. The article emphasizes the necessity of carrying out complex experimental researches that will allow to predict the long-term stability of the bentonite buffer in the conditions of geological repository existence, taking into account mineralogical- geochemical processes caused by corrosion of steel containers.

References

Лавриненко Е.Н. Прокопенко В.А., Лебовка Н.И., Ма- муня С.В. Влияние температуры на развитие наноразмерных заро- дышевых железо-кислородных структур в системе Fe0-H2O-O2 / Е.Н.Лавриненко, В.А. Прокопенко, Н.И. Лебовка, С.В. Мамуня // Коллоидн. Журн. 2008. Т. 70., №3. С. 1–8.

Чухров Ф.В., Ермилова Л.П., Горшков А.И. и др. Ги- пергенные окислы железа в геологических процесах. М.: Наука, 1975.207 c.

Гольдберг В.М.Скворцов Н.П. Проницаемость и филь- трация в глинах. М.: Недра. 1986. 160 с.

Дриц В.А. Коссовская А.Г. Глинистые минералы: смектиты, смешанослойные образования: Монография. М.: Наука. 1990. – 214 с.

Лавриненко Е. Н.Fe(II)-Fe(III)-слоевые двойные гид- роксиды (greenrust) Ч. I. Химический и электрохимический синтез, роль микроорганизмов в процессах синтеза, структура // Нано- структурное материаловедение. 2009. № 3. С. 15–40.

Лавриненко Е. Н.Fe(II)-Fe(III)-слоевые двойные гид- роксиды (greenrust). Ч. II. Формирование в природных условиях, фазовые трансформации и взаимодействие с компонентами окру- жающей среды // Наноструктурное материаловедение. 2009. № 4. С. 16–53. 7. Наноминералогия. Ультра- и микродисперсное состо- яние минерального вещества. СПб. : Наука, 2005. 581 с.

Шабалін Б.Г., Лавриненко О.М., Косоруков П.О.,Бугера С.П. Перспективи використання природних бентоніто- вих глин України для створення геологічного сховища радіоактив- них відходів // Мінерал. журнал. 2018. Т.40. №.4. С. 65-78.

Bennett D.G., Gens R. Overview of European concepts for high-level waste and spent fuel disposal with special reference waste container corrosion. Longterm prediction of corrosion damage in nuclear waste systems// J. Nuclear Materials. 2008. Vol. 379. P. 1-8.

Burleson D. J., Penn R. L. Two-Step Growth of Goethite from Ferrihydrite. Langmuir. 2006. V. 22. P. 402–409.

Abdelmoula M., Refait Ph., Drissi S. H. et al.Conversion electron Mössbauer spectroscopy and X-ray diffraction studies of the formation of carbonate-containing green rust one by corrosion of metal- lic iron in NaHCO3 and (NaHCO3 + NaCl) solutions. Corros. Sci. 1996. V. 38. N 4. P. 623–633.

Cornell R. M., Schwertmann U. The iron oxides: struc- ture, properties, reactions, occurrence and uses 2th ed. Wiley-VCH, Weinheim, Germany, 2003.703 p.

Corrosion and alteration of nuclear materials. Paris: CEA, 2010. 160 p.

Curti E., Wersin P. Assessment of Porewater Chemistry in the Bentonite Backfill for the Swiss SF // HLW Repository. Nagra. Technical report 02-09. 78 р.

Benali O., Abdelmoula M., Refait Ph., Genin J.-M.R. Ef- fect of orthophosphate on the oxidation products of Fe(II)-Fe(III) hy- droxycarbonate: the transformation of green rust to ferrihydrite // Geo- chim. Cosmochim. Acta. – 2001. – V. 65. – N 11. – P. 1715–1726.

Lair V., Antony H., Legrand L., Chausse A. Electrochemi- cal reduction of ferric corrosion products and evaluation of galvanic coupling with iron / V. Lair, // Corros. Sci. 2006. V. 48. P. 2050–2063.

Flynn C. M. Hydrolysis of inorganic iron(III) salts // Chem. Rev. 1984. V. 84. P. 31–41.

Refait Ph., Benali O., Abdelmoula M., Genin J.-M. R. Formation of «ferric green rust» and/or ferrihydrite by fast oxidation of iron(II–III) hydroxychloride green rust // Corr. Sci. 2003.V. 45. P. 2435– 2449.

Fukaya Y. Akashi M.Passivation behavior of mild steel used for nuclear waste disposal // Mat. Res. Symp. Proc. Vol. 556. 1999. P. 871-878. 20. Geological dispousal. A review of the development of bentonite barriers in the KBS-3V disposal concept. NDA Technical Note no. 21665941. 2014. – 84 p.

Sumoondur A., Shaw S., Ahmed I., Benning L.G. Green rust as a precursor for magnetite: an in situ synchrotron based study // Mineral. Magazine. 2008. V. 72, N 1. P. 201–204.

Ishikawa H., Shibata M., Fujita T. Simulation of the Thermal Transformation of Smectite to Illite as the Buffer Material for Waste Disposal // Journal of the Clay Science Society of Japan. 1994. – V.34. P. 149–156.

Kamei G., Yusa Y., Sasaki N. Natural Analogue Study on the Long- Term Durability of Bentonite. Time-Temperature Condition and Water Chemistry on Illitization at the Murakami Deposit, Japan // Materials Research Society Symposium Proceedings. 1992. V.257. Р.505–512.

Karnland O., Olsson S., Nilsson U. Mineralogy and seal- ing properties of various bentonites and smectite–rich clay minerals. SKB Technical Report TR-06-30. 2006.

King F.Corrosion of carbon steel under anaerobic condi- tions in a repository for SF and HLW in Opalinus Clay. Technical Re- port 08-12. Wettingen: Nagra, 2008. 44 p.

King F.Kolar M. Theory Manual for the Steel Corrosion Model Version 1.0 / F. King, M. Kolar // Report No.: NWMO TR-2009- 07.

King F., Shoesmith D.W. Nuclear waste canister materials, corrosion behavior and long-term performance in geological repository systems // In “Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste”. J. Ahn, M.J. Apted (Eds). Corn- wall, UK: Woodhead Publishing Ltd, 2010. P. 379–420.

Kumpulainen S., Kiviranta L., Carlsson T., Muurinen A., Svensson D., Sasamoto H., Yui M., Wersin P., Rosch D. Long-Term Alteration of Bentonite in the Presence of Metallic Iron. POSIVA .Working Report 2010-71. 98 p.

Laine H., Karttunen P. Long-Term Stability of Bentonite: A Literature Review (Working Report 2010-53),. – Olkiluoto, Finland: Posiva OY, 2010. 132 p.

Lavrynenko O.M., Korol Ya.D., Netreba S.V., Prokopenko V.A. Kinetic regularity of the formation of Fe (II)–Fe (III) LDH struc- tures (Green Rust) on the steel surface in presence of the FeSO4 and Fe2(SO4)3 water solutions // Хімія, фізика та технологія поверхні. 2010. Т. 1. № 3. С. 338–342.

Lewis D. G. Factors influencing the stability and proper- ties of Green Rusts. Adv. Geoecol. 1997. V. 30. P. 345–372.

Meunier A, Velde B., Griffault L. The reactivity of benton- ites: a review. An application to clay barrier stability for nuclear waste storage. Clay Miner.

1998. P. 187 – 196. 33. NUMO. Proceedings of the International Workshop on Bentonite-Cement Interaction in Repository Environments 14-16 April 2004, Tokyo, Japan. NUMOTechnical Report No. NUMO-TR-04-05.

PetterssonS., LönnerbergB.Final repository for spent nu- clear fuel in granite – the KBS-3V conctpt in Sveden and Finland // International ConferenceUnderground Disposal Unit Design & Em- placement Processes for a Deep Geological Repository.6-18 June 2008, Prague, P. (20)1-12.

Project Opalinus Clay Safety Report. Demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long- lived intermediate-level waste. Technical report 02-05. Wettingen: NAGRA, 2002. 472 p.

Refait Ph., Genin J.-M.R. The mechanisms of oxidation of ferrous hydroxychloride β-Fe2(OH)3Cl in aqueous solution: the for- mation of akaganeite vs goethite // Corros. Sci. 1997.V. 39. P. 539–553.

Rodriguez M.A.Anticipated degradation modes of metallic engineered barriers for high-level nuclear waste repositories. JOM. 2014. Vol. 66. № 3. P. 503-525.

Samper J., Lu C., Montenegro L. Coupled hydrogeochem- ical calculations of the interactions of corrosion products and bentonite. Phys.Chem.Earth. 2008. V. 33. P. 306–316.

Schwertmann U., Cornell R. M. Iron Oxides in the Labor- atory: Preparation and Characterization // 2th,Compl. Rev. and Ext. Ed.. Wiley-VCH : Wienheim, 2000 Р. 185.

Schwertmann U. Fechter H. The formation of green rust and its transformation to lepidocrocite. Clay Minerals.1994.V. 29. P. 87–92.

Shestopalov V.M., Shybetskyi Iu.A., Proskura M.I., Zinkevich L.I., Temny R.G. Geological Disposal of Radioactive Waste in Ukraine: Background, Status, and Future Steps // In: International Ap- proaches for Nuclear Waste Disposal in Geological Formations: Geolog- ical Challenges in Radioactive Waste Isolation—Fifth Worldwide Re- view”, Editors: B. Faybishenko, J. Birkholzer, D. Sassani, and P. Swift, LBNL-1006984, 2016. DOI 10.2172/1353043.

SKB. Long-Term Safety for KBS-3 Repositories at For- smark and Laxemar – a First Evaluation (Main Report of the SR-Can Project). SKB Technical Report TR-06-09. Svensk Kärnbränslehanter- ing AB, Stockholm, Sweden.2006.

Smart N.R., Blackwood D.J., Werme L.O.The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters. SKB Technical Report TR-01-22. 2001., Smart R.N., Rance A.P., Werme L.O.Anaerobic corrosion of steel in bentonite // MRS Symp. Proc. Vol. 807. 2004. P. 441-446.

Genin J.-M. R., Abdelmoula M., Ruby Ch., Upadhyay Ch. Speciation of iron; characterization and structure of green rusts and FeII- III oxyhydrocarbonate fougerite. C.R.Geosci. 2006. V.338. P. 402–419.

Stammoze D., Vokal A.Preliminary interpretation of ex- perimental results on gas generation. FORGE Report D2.3-R. 2012. 34 p.

Simon L., François M., Refait Ph., Renaudin G. at all. Structure of the Fe(II-III) layered double hydroxysulphate green rust two from Rietveld analysis // Sol. St. Sci. – 2003. – V. 5, Is. 2. – P. 327–334.

Tamura H. The role of rusts in corrosion and corrosion protection of iron and steel // Corrosion Science. – 2008. – V. 50. – P.1872–1883.

Taniguchi N., Honda A., Ishikawa H.Experimental inves- tigation of passivation behavior and corrosion rate of carbon steel in compacted bentonite // MRS Symp. Proc. Vol. 506. 1998. P. 495-501.

The management system for the disposal of radioactive waste, June 2008, IAEA Safety Standards Series N°. GS-G-3.4, Vienna.

Tronc E., Belleville P., Jolivet J. P., Livage J. Transfor- mation of ferric hydroxide into spinel by Fe(II) adsorption // Langmuir. – 1992. – V. 8. – P. 313–319.

TripathyS., Thomas H.R., Stratos P. Response of Compacted Bentonites to Thermal and Thermo-Hydraulic Loadings at High Temperatures. Geosciences. 2017. V.7. N 3. P.53–57.

Trolard F. Fougerite: From field experiment to the ho- mologation of the mineral. C. R. Geosci. 2006. V. 338. P. 1158–1166.

Tsutomu S., Takashi, M., Hiroshi I., Toshihiko O. Effect of crystallochemistry of starting materials on the rate of smectite to illite reaction. Mater. Res. Soc. Symp. roc. 353.1995. P. 239–246.

Turnbull A.A review of the possible effects of hydrogen on lifetime of carbon steel nuclear waste canisters. Technical Report 09- 04. Wettingen: Nagra, 2009. 51 p.

Pozas R., Ocana M., Morales M. P., Serna C. J. Uniform Nanosized Goethite Particles Obtained by Aerial Oxidation in the FeSO4-Na2CO3 System. J. Coll. Interf. Sci. 2002. V. 54. P. 87–94.

Wersin P., Birgersson M., Olsson S, Karnland O., Snell- man M. Impact of Corrosion-Derived Iron on the Bentonite Buffer Within the KBS-3H Disposal Concept – the Olkiluoto Site as Case Study. POSIVA. Working Report 2007-11. 78 р.

Wersin P., Johnson L.H., McKinley I. G. Performance of the bentonite buffer at temperatures beyond 100 °C: A Critical Review // Physics and Chemistry of the Earth, Parts A/B/C. 2006. V.32. N 8-14. P. 780–788.

Wilson J., Cressey G., Cressey B., Cuadros J., Vala Rag- narsdottir K., Savage D., Shibata M. The effect of iron on montmorillo- nite stability: (II) Experimental investigation // Geochimica et Cosmo- chimica Acta. 2006. V. 70. P. 323–336.

Xu Q.F., Wang W., Pang X.L. et al.Investigation of corro- sion behaviours of high level waste container materials in simulated groundwater in China. Corrosion Engineering, Science and Technology. 2014. Vol. 49. № 6. Р. 480-484.

Yoshikawa H., Gunji E., Tokuda M.Long term stability of iron for more than 1500 years indicated by archaeological samples from the Yamato 6th tumulus. J. Nucl. Mater. 2008. Vol. 379. P. 112-117.

Published

2023-05-01