EXPERIMENTAL DETERMINATION OF TRITIUM MATRIX DIFFUSION COEFFICIENT IN THE SAMPLES OF RAPAKIVI-LIKE-GRANITE
Abstract
Effective (matrix) diffusion coefficient and effective porosity are the key parameters in order to describe the diffusion mass transfer of contaminating components in low-permeable crystalline rocks. The experimental method on determination of parameters was chosen and approved. Values for effective diffusion coefficient of tritium and effective porosity of rapakivi-like-granite samples taken from Omelianivsky quarry were calculated.
References
Neretnieks I. Diffusion in the Rock Matrix: An important factor in radionuclide retardation // J. Geophys. Res. – 1980. 85, B8. P. 4379–4397.
Grisak G.E., Pickens J.F. Solute transport through fractured media. 1. The effect of matrix diffusion // Water Res. Research - 1980. 16, 4. P. 719 - 730.
Lever D.A., Bradbury M.H., Hemingway S.J. Modelling the effects of diffusion into the rock matrix on radionuclide migration // Progress in Nuclear Energy – 1983. 12, 1. P. 85-117.
Skagius K., Neretnieks I. Porosities and diffusivities of some nonsorbing species in crystalline rocks // Water Resour. Res. - 1986. 22, N 3. P. 389-398
Gale, J., MacLeod, R., Welhan, J., Cole, C., Vail, L. 1987. Hydrogeological characterization of the Stripa site. - Stockholm: Swedish Nuclear Fuel and Waste Management, 1987. 146 p. (Stripa Project Technical Report 87-15).
Vieno T. Safety analysis of disposal of spent nuclear fuel. Espoo: Technical Research Centre of Finland, 1994. 262 p. + app. 3 p. (VTT Publications 177).
Valkiainen M. Diffusion in the rock matrix - A review of laboratory tests and field studies. Helsinki: Nuclear Waste Commission of Finnish Power Companies, 1992. 52 p. (Report YJT-92-04).
Foster S.D. The Chalk groundwater tritium anomaly. A possible explanation. J. Hydrol. – 1975. 25. P.159-165.
Jardine P.M., Sanford W.E., Gwo J.P., et al. Quantifying diffusive mass transfer in fractured shale bedrock //Water Resour. Res. – 1999. 35, 7. P.2015-2030.
Kozaki T., Sato, H., Sato, S., Ohashi, H. Diffusion mechanism of cesium ions in compacted montmorillonite // Eng.Geol. - 1999. 54: P.223-230.
Kozaki T., Inada K., Sato S., Ohashi, H. Diffusion mechanism of chloride ions in sodium montmorillonite // J. Contam. Hydrol. – 2001. 47: P.159-170.
Guimera J., Carrera J. A comparison of hydraulic and transport parameters measured in low-permeability fractured media // J. Contam. Hydrol. –2000. 41, 3-4. P.261-281.
Andersson P., Byegard J., Tullborg E.L., Doe T., Hermanson J., Winberge A. In situ tracer tests to determine retention properties of a block scale fracture network in granitic rock at the Aspo Hard Rock Laboratory, Sweden // J. Contam. Hydrol. – 2004. 70, 3-4. P. 271-297.
Liu H.H., Salve R., Wang J.S., Bodvarsson G.S., Hudson D. Field investigation into unsaturated flow and transport in a fault: model analyses // J. Contam. Hydrol. – 2004. 74, 1-4. P. 39-59.
Zhou Q., Liu H., Molz F.J., Zhang Y., Bodvarsson G. Field-scale effective matrix diffusion coefficient for fractured rock: Results from literature survey // J. Contam. Hydrol. - 2007. 93, 1-4. P. 161–187
Witthüser, K., Aenepalli D., Singh D.N. Investigations on diffusion characteristics of granite and chalk rock mass // Geotech. Geol.Engineer. – 2006. 24. P. 325-334
Widestrand H., Byegård J., Ohlsson Y., Tullborg E-L. Strategy for the use of laboratory methods in the site investigations programme for the transport properties of the rock. 2003. SKB R-03-20. Swedish Nuclear fuel and Waste Management Company.
Carman P.C. Flow of gases through porous media. New York: Academic Press Inc., 1956, 182p.
Crank J. The mathematics of diffusion – Oxford: Clarendon Press, 1975 (Second ed.), 414p.
Saripalli K. P., Serne R. J., Meyer P. D., McGrail B. P. Prediction of diffusion coefficients in porous media using tortuosity factors based on interfacial areas // Ground Water – 2002. 40. P.346–352.
Skagius K., Neretnieks I. Measurement of cesium and strontium diffusion in biotite gneiss // Water Resour. Res. – 1988. 24, 1. P.75–84.
Tits J., Jacob A., Wieland E., Spieler P. Diffusion of tritiated water and 22Na+ through non-degraded hardened cement pastes // J. Contam. Hydrol. – 2003. 61, 1. P.45–62.
Feenstra S., Cherry J. A., Sudicky E. A., Haq Z. Matrix diffusion effects on contaminant migration from an injection well in fractured sandstone // Ground Water – 1984. 22, 3. P.307–316.
Carslaw H. S., Jaeger, J. C. Conduction of heat in solids. – Oxford: Clarendon Press, 1959.
Bradbury M. H., Green A. Measurement of important parameters determining aqueous phase diffusion rates through crystalline rock matrices // J. Hydro. – 1985. 82, 1. P.39–55.
Ohlsson Y., Neretnieks I. 1995. Literature survey of matrix diffusion theory and of experiments and data including natural analogues. 1995. SKB TR 95-12. Department of Chemical Engineering and Technology, Royal Institute of Technology, Stockholm, Sweden