INTERACTION BETWEEN HTO AND CLAY MINERALS
Abstract
These are precisely clay minerals allow the most effective decreasing tritium concentration in the geoinfiltration flow at the expense of hydrogen-isotopes exchange between water and mineral phases during tritium water migration through sedimentary strata. The intensity and velocity of this process depend on the accessibility of reaction surfaces of mineral particles for HTO molecules which in its turn depends on the structural and chemical-structural properties of clay minerals. The exchange velocity on the phases boundary and tritium diffusiveness in the different parts of water-mineral system (interstitial species, interlayer or zeolitic water and crystal structure of clay minerals) also affect on the process of tritium redistribution between different phases.
References
R.A. Pushkareva, P.F. Hach-Ali, L.A. Galindo, A.V. Pushkarev, A.S. Lytovchenko Fractionation of the hydrogen isotopes in clay // 9th Conference of the European Clay Groups Association EUROCLAY-1999, September 5–9, 1999, Krakow, Poland p. 124.
Пушкарев А.В., Пушкарева Р.А., Литовченко А.С., Колтунов Б.Г. Буферные свойства геологической среды в местах размещения хранилищ тритийсодержащих радиоактивных отходов //Збірник наукових праць Державного наукового центру радіогеохімії навколишнього середовища // Сер.Техногенно- екологічна безпека навколишнього середовища. — К., 2000. — Вип. 1. — С.117–127.
Kalinichenko, E.A., Pushkarova, R.A., Fenoll Hach Ali, P. & L pez-Galindo, A. Tritium accumulation in the structure of some clay minerals // Clay Minerals. — 2002. — 37. — P. 497–508.
R.A. Pushkareva, P.F. Hach-Ali, L.A. Galindo, A.V. Pushkarev, A.S. Lytovchenko Fractionation of the hydrogen isotopes in clay // 9th Conference of the European Clay Groups Association EUROCLAY-1999, September 5–9, 1999, Krakow, Poland p. 124.
A.V. Pushkarev, A.S. Lytovchenko, R.A. Pushkareva, P.F. Hach-Ali Clay rocks as geological barrier for tritium contamination in storages of a radioactive waste // Proceedings of ICAM, (13-21 July, 2000). — Goetingen, Germany, 2000. — P. 633–636.
О.В. Пушкарьов, А.С. Литовченко, Р.О. Пушкарьова, Е.О. Яковлєв Динаміка накопичення тритію в мінеральному середовищі //Мінеральні ресурси України, 2003, № 3, С 42–45.
A. Lopez-Galindo, P. Fenoll Hach-Ali, A.V. Pushkarev, A.S. Lytovchenko, J.H. Baker, R.A. Pushkarova Tritium redistribution between water and clay minerals //Applied Clay Science, — 2008, v.39, p. 151–159.
A.S. Lytovchenko, A.V. Pushkarev, V.P. Samodurov, J.H. Baker, P. Fenoll Hach-Ali, A. Lopez-Galindo, Assessment of the potential ability of phyllosilicates to accumulate and retain tritium in structural OH-groups. // Mineralogical Journal. — 2005. N 2. — P. 59–65.
Choi J.W. et al. (1996) Effect of exchangeable cation on radionuclide diffusion in compacted bentonite. J. Кorеап Nucl. Soc. 3, 274–279.
Пушкарева Р.О. Тритий в структуре минералов лессовидных пород. //Мін.ж. — 1998. — т.20, №3 — С. 67–69.
Solver J.М. (1999) Coupled transport phenomena in the opalinus с1ау: implications for radionuclide transport. PSI Веr. 7, 1–62.
Goldansky V.I., Trahktenberg L.I., Flerov V.N. Tuneling phenomena in Chemical Physics. N.-Y.: Gordon and Breach Science Publishers, 1989. — 328 p.
Hammes-Shiffer S. Mixed quantum/classical dynamics of single proton, multiple proton, and proton-coupled electron transfer reaction in the condensed phase. //Advances in Classical Trajectory Methods. — 1998. — v. 3, p. 73–119.
Zakn D. & Brickmann J. (1999) Quantum-classical simulation of proton migration in water. Jsr. J. Chem. 39, N З–4, 463–482.
Maiti G., Freund F. Dehydration-related proton conductivity in kaolinite // Clay minerals. — 1981. — 16, № 4. — P. 395–413.
Пушкарьова Р.О. Обмін ізотопів водню у глинистих мінералах. Автореферат дисертації. Київ. — 1999. — 19 p.
Bailey S.W. Summary and recommendation of the AIPEA Nomenclature committee. Clay Science. — 1979. — 5, № 4. — P. 209–220.
Тарасевич Ю.И. Строение и химия поверхности слоистых силикатов. Киев: Наукова думка, 1988. — 248 с.
Marcelo J. Avena, Marcelo M. Mariscal, Carlos P. De Pauli. Proton binding at clay surfaces in water // Applied Clay Science, 2003, v.24, p. 3–9. 20. Bleam W.F. The nature of cation substitution sites in phyllosilicates. //Applied Clay Minerals. — 1990, 38. p. 527–536.
Borkovec M., J nsson B., Koper G.J.M. Ionization process and proton binding in polyprotic systems: smoll molecules, proteins, interfaces, and polyelectrolytes. //Surface Colloid Sci., — 2001., 16, p. 99–339.
G ven N. Smectites. //Hydrous Phyllosilicates. Reviews in Mineralogy. Washington: Min. Soc. Am., — 1991. — vol. 19, — P. 497–559.
Gaines, R.V., Skinner H.C.W., Foord E.E., Mason B., Rosenzweig A. Dana's New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, 8th Edition. John Wiley & Sons, Inc (ISBN: 0471-19310-0), — 1997, 1872 p.
Дир У.А., Хауи Р.А., Зусманн Дж. Породообразующие минералы. — М. : Мир, 1966. т.3. — 317 с.
Лазаренко Е.К. Курс минералогии. — М.: „Высшая школа», 1971. — 608 с.
Тарасевич Ю.И., Овчаренко Ф.Д. Адсорбция на глинистых минералах. — Киев: Наукова Думка, 1975. — 352 с.
Пушкарева Р.А., Литовченко А.С., Пластинина М.А., Пушкарев А.В., Калиниченко Е.А. Исследование обмена изотопов водорода в глинистых минералах под воздействием гамма-облучения методом ИК- спектроскопии. // Радиохимия, 1999, т.41, № 6, стр. 558–562. 28. R. Pushkareva, E. Kalinichenko, A. Litovchenko, A. Pushkarev, V. Kadochnikov, M. Plastinina Irradiation effect on physic-chemical properties of clay minerals // Applied Clay Science. — 2002. — № 21. — P. 117–123.
Wersin P., Curti E., Apello C.A.J. Modelling bentonite — water interactions at high solid/liquid ratios: swelling and diffuse double layer effects. //Applied Clay Science. — 2004. 26, — P. 249–257.
Фудзинага С. Метод молекулярных орбиталей. М.: Мир, 1983. 462 с.
Pauling L. The nature of the Chemical bond. - N.-Y.: Cornel University Press, 1960. 644 p.
Годовиков A.A. Минералогия. — М.: Недра, 1983. — 647 p.
Звягин Б.Б. Электронография и структурная кристаллография глинистых минералов. — М.: Наука, 1964. — 282 с.